Information Value Theory in Query Augmentation

نویسندگان

  • ANDY DONG
  • J ENRIQUE BARRETO
  • ALICE M AGOGINO
چکیده

Information retrieval (IR) systems interact with users by returning a ranked list of relevant documents in response to a query. Through feedback mechanisms such as relevance feedback and automated keyword expansion, IR systems attempt to guide users in constructing search queries which better represent their information needs. These mechanisms, however, do not offer the user more insight into the content of the documents in the IR database nor do they provide direction as to which search terms might yield better search results in terms of relevance and certainty that the retrieved document contains the information the user intended to retrieve. This paper presents a methodology based on the decision-analytic concept of expected value of perfect information for controlling query augmentation in information retrieval. The system dynamically learns the content of the documents in the database to compute the utility (measured in terms of relevance) of retrieving certain documents in response to queries, where the words in the queries represent the random variables. By computing the expected value of perfect information for each query term, the system either suggests new search terms or suggests that the user terminate the search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QEA: A New Systematic and Comprehensive Classification of Query Expansion Approaches

A major problem in information retrieval is the difficulty to define the information needs of user and on the other hand, when user offers your query there is a vast amount of information to retrieval. Different methods , therefore, have been suggested for query expansion which concerned with reconfiguring of query by increasing efficiency and improving the criterion accuracy in the information...

متن کامل

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

Analysis of User query refinement behavior based on semantic features: user log analysis of Ganj database (IranDoc)

Background and Aim: Information systems cannot be well designed or developed without a clear understanding of needs of users, manner of their information seeking and evaluating. This research has been designed to analyze the Ganj (Iranian research institute of science and technology database) users’ query refinement behaviors via log analysis.    Methods: The method of this research is log anal...

متن کامل

Discovering Popular Clicks\' Pattern of Teen Users for Query Recommendation

Search engines are still the most important gates for information search in internet. In this regard, providing the best response in the shortest time possible to the user's request is still desired. Normally, search engines are designed for adults and few policies have been employed considering teen users. Teen users are more biased in clicking the results list than are adult users. This leads...

متن کامل

Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information

With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007